Branching morphogenesis.

نویسندگان

  • Arie Horowitz
  • Michael Simons
چکیده

Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterned cell and matrix dynamics in branching morphogenesis

Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied ...

متن کامل

Regulatory mechanisms of branching morphogenesis in mouse submandibular gland rudiments

Branching morphogenesis is an important developmental process for many organs, including the salivary glands. Whereas epithelial-mesenchymal interactions, which are cell-to-cell communications, are known to drive branching morphogenesis, the molecular mechanisms responsible for those inductive interactions are still largely unknown. Cell growth factors and integrins are known to be regulators o...

متن کامل

Turing mechanism underlying a branching model for lung morphogenesis

The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we ...

متن کامل

Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter.

Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphoge...

متن کامل

Branching morphogenesis of the lung: new molecular insights into an old problem.

It has been known for decades that branching morphogenesis of the lung is mediated through reciprocal interactions between the epithelium and its underlying mesenchyme. In recent years, several key players, in particular members of the major signaling pathways that mediate this interaction, have been identified. Here, we review the genetic and molecular studies of these key components, which ha...

متن کامل

Cell and fibronectin dynamics during branching morphogenesis.

Branching morphogenesis is a dynamic developmental process shared by many organs, but the mechanisms that reorganize cells during branching morphogenesis are not well understood. We hypothesized that extensive cell rearrangements are involved, and investigated cell migration using two-color confocal time-lapse microscopy to image cell and extracellular-matrix dynamics in developing salivary gla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2008